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Residual Analysis for Circular Cylindrical Shells
under Segmental Line-Load
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In order to avoid a prohibitive amount of labor required to compute rather accurately de-
flections and stresses for a thin shell from usually slowly econvergent infinite series, an alterna-
tive approach is suggested, namely, to stop the computations at a small number of terms and

then estimate rather accurately the remainder, denoted as a ““residual.’’

In doing so, asymp-

totic expressions for residuals are resorted to, and the radius of convergence is complied with.
This technique is applied herein to the calculation of the deflections of and stresses in a thin-
walled circular cylindrical shell, simply supported at its ends and under a centrally located,

uniformly distributed, inward radial line-load over a circumferential segment.

For possible

extension of this approach to similar boundary-value problems with loadings of axial and cir-
cumferential moments applied as distributed line-loads along the same circular segment of
the eylinder, integration constants are also derived and listed.

Introduction

OWADAYS, thin-walled shells, such as those of circular
cylinders, are used extensively in almost every industry.
In particular, they are widely employed as component parts
of spacecraft, nuclear reactors, submarines, gas turbines, and
airplanes. In most cases, the formulation of their stresses
and deflections under various static or dynamic loads results
in infinite series. Usually, after the first few terms, the re-
maining ones in the series decrease rather slowly in absolute
value. As an example, the paper contributed by Bijlaard?!
on the problem of circular eylindrical shell under radial
surface-load over a small rectangular area of the shell surface
can be cited. As a consequence, an exceedingly large number
of terms may be required to attain satisfactory accuracy in
the results. Thus, the amount of work involved is prohibi-
tive in most calculations.

To circumvent this time-consuming situation, Meck?
suggested a reduction in the order of the differential equa-
tion when he employed the complete Donnell equation?
for the purpose of accuracy in solving the problem of a thin
cylindrical shell under a sinusoidally distributed line-load of
nth harmonic in the circumferential direction. Unfortu-
nately, the suggested order-reduction method not only de-
feats his original purpose but also introduces errors of ex-
tremely large magnitude, even if n is only slightly different
from zero.*
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To counteract this difficulty squarely, two alternatives may
be resorted to: 1) method of transform, with a hope that
the infinite series originated therefrom would be more rap-
idly convergent; in this regard, Nash and Bridgland® em-
ployed the finite Fourier transform to solve Fliigge's® equa-
tions; and 2) the technique of computing residuals,” % in
which a residual is defined as the remainder of the infinite
series after a small number of the first few terms; this tech-
nique is used to enhance the accuracy without prohibitive
labor.

In the present paper, the method of computing residuals is
applied to the determination of the stresses in and deflections
of a thin-walled circular eylindrical shell, simply supported
at its ends and under a centrally located, uniformly dis-
tributed, inward radial line-load over a circumferential
segment. ’

The numerical results thus obtained are designated as solu-
tion 1. The corresponding results in Refs. 8 and 11 for de-
flections and stresses of the same eylinder, with the excep-
tion that the uniformly distributed line-load acts along a
segment in the direction of a generator of the cylinder, are
designated as solution 2. Curves representing these results
are shown in Figs. 1-5 for comparison.

Mustrative Example

A simply supported, thin-walled, ecircular cylindrical shell,
under a uniformly distributed, radially inward line-load over
a centrally located circumferential segment, is used as an
illustrative example (see Fig. 6). If the deflections are ex-
pressed as exponentials along the generator and trigonometric
functions of nth harmonics in the circumferential direction,
methods based on Refs. 12 and 13 may be applied to solve
Donnell’s equations for the deflections and stresses, caused
by the action of such a localized force. For numerical calcu-
lation, the radius-thickness ratio a/h is 50, radius-length ratio
a/L is 4, the ratio 6/2wa comparable to /L in Ref. 11 for
solution 2 is £, and Poisson’s ratio » is 0.3.

When only half of the cylindrical shell is taken into con-
sideration, the line-load problem is transformed into one
involving prescribed boundary conditions along ecircular
boundaries. When the body force is assumed negligible,
the homogeneous equilibrium equations for an element of the
cylindrical shell can be employed.
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Fig. 1 Radial deflection distributions along coordinate
axes due to inward radial load resultant P* (3/2ra = 4%,
a/L = %, a/h = 50).
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Fig. 2 Axial membrane stress distributions along co-
ordinate axes due to inward radial load resultant P*
(6/27a = Zlﬁ, a/L = %, a/h = 50).
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Fig. 3 Circumferential membrane stress distributions
along coordinate axes due to inward radial load resultant
P* (5/2ra = 7%, a/L = %, a/h = 50).

For convenience, three nondimensional deflections, u, v, and
w, and one nondimensional coordinate z may be formed by
dividing the corresponding dimensional quantities by the
median radius @ of the cylindrical shell. With the sign con-
vention as shown in Fig. 7, the membrane stresses (o.,04,
and 7.4), the moment-resultants per unit length (M., M4, and
M), represented by right-hand vectors, the shear forces
(@- and @), and the total effective shear forces per unit
length (Q.. et and Q. ozr) can be expressed as functions of the
three nondimensional deflections and their derivatives with
respect to the nondimensional coordinates z and ¢.% 0. 12. 13
Here ¢ denotes the circumierential angle.
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Fig. 4 Inner surface axial bending stress distributions
along coordinate axes due to inward radial load resultant
P* (5/2ra = 1%, a/L = 1, a/h = 50).
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Fig. 5 Inner surface circumferential bending stress
distributions along coordinate axes due to inward radial
load resultant P* (5/2ra = 3%, a/L = £, a/h = 50).
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Fig. 6 Applied radial loading.

Boundary Coenditions and Integration Constants

For half of the cylindrical shell (Fig. 6), the appropriate
simply supported boundary conditions are w = W,.p = U, =
v=0ate=L2cand w. = 4 = 7.6 = 0and w sz = 1 at
z = 0, where the subscripts following a comma indicate
partial differentiation. In the shear boundary condition
W, 522, UNILY is assumed on the right-hand side of the equation
for convenience. In view of the linearity of the problem, the
actual value for any » can be introduced later.

The symbols for eight constants of integration Hy, . . . Hs
for n > 1 and the remaining eight G4, . . . Gs for n = 0, as
denoted in Ref. 13, are used. When the boundary conditions
are imposed,® ° these constants can be evaluated as follows:
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1) Forn >1,
H; = —{n*n* — (K¥2)] — K[n2a —
(K?/2)B.]}/{4Kn?[(K?/2)? + n*]}

Hs = {n?[n? + (K%/2)] — K[n?6: +
(K*/2) ]} /{4Kn?[(K?/2)? + n]}

“H; = {n2[n? — (K¥/2)] + K[n%a; — M

(K2/2)B:]}/ {4Kn2[(K?/2)? + nt]}

Hy = —{n?[n* + (K*/2)] + K[n?8; +
(K2/2) oy} /{4Kn2[(K2/2)® + n]}
where
K = [3Q1 — v5)]¥4a/R)M? @)
a; = 3[Q — (—1)K + n2/Q] _
8 = 110 + (1K — nz/Q]} G=12 G
and

Q= +{- &Y + (Y22 + wiprpr @

With the known constants Hs, . . . Hs, the values of Hy, . .. Hs
can be determined from the following relationships:

H2j-—1 = H2j+382j+3 + H2j+4182j.|4} _
Hy = HajraSspis — HopiaSoa =12 6
where
Szi43 = tanh(e;L/a)/(1 + ¢;) } - N
Seja = ¢; tan(B;L/a)/ (1 + ¢;) (=120 6
and

g; = cos(B;L/a)/cosh(ayL/a) (j = 1,2) (7)
2) Forn =0,

G, = [tanh(KL/a) — q tan(KL/a)]/[4K3*(1 + @)] } )
G, = —[tanh(KL/a) + qo tan(KL/a}]/[4K3(1 + qo)]
where
@ = cos(KL/a)/cosh(KL/a) 9)

and

G3 = G4 = G7 =0

G = —G = —l/éng (10)

Gs = v/4K+4

As stated before, at £ = 0 the shear boundary condition
0,52 10T any n is assumed to be unity for convenience. The
actual value can be obtained from the Fourier expansion for
the radial line-load shown in Fig. 6; P* is the total resultant
load due to the uniformly distributed radial load for the entire
cylinder over an arc length of 24.

Fig. 7 Sign cenventions for coordinates, deflections,
membrane stresses, and internal moment and transverse
shear resultants.
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For half of the cylinder, from z = 0 to z = +1L/2aq,
P* é/a
7= 2 j; qa cospdo

where ¢ is the radial load per unit circumferential length.
Therefore, the radial load per unit length for half of the
cylinder is distributed such that

g = P*/4a sin(é/a) for —b6/a < ¢ < é/a } an
=0 ford/a < ¢ < —d/a

Up to now it has been assumed that, for any n, w ... =
1atz = 0, which implies ,

~ Q. ett/(D/a?) cosng = 1 (12)
where
D = Er3/[12(1 — »?)] (13)

is the flexural rigidity of the shell. However, if the Fourier
expansion is used for the present solution, for n = 0,
Qz- eff P*(a/a)

~ D/ ~ 1x(DJa) sn(/a) (14)

andforn > 1,

_ Qz' eff _ P* sin(nﬁ/a)
(D/a?) cosng  2w(D/a)n sin(s/a)

(15)

Symbols Introduced for Conciseness

For convenience of handling and grouping terms in equa-
tions for deflections and stresses, simplifying formulas, and
investigating convergence, the symbols as defined in the
following are introduced :

M) = [coshKz tanh(KL/a) — sinhKz] cosKz
No(®) = [coshKz — sinhKz tanh(KL/a)] sinKx

@Q(z) = coshKzx cosKz tanh(KL/a) + sinhKz X (16)

. sinKz tan(KL/a)

Ry(z) = coshKzr cosKz tan(KL/a) —
sinhKz sinKx tanh(KL/a)

and

M(x) = [coshayr tanh(a;L/a) — sinhaz] cosfz

Nyx) = [coshax — sinhey tanh(ayL/a)] sinBx

Qx) = [tanh(eyL/a) 4+ tanhaw tanBzx X an)
tan(B;L/a)] coshax cosfx

Ri(z) = [tan(B;L/a) — tanha tanfBx X

tanh(e;L/a)] coshaz cosBix

wherej = 1 or 2.
For further simplification in presentation of formulas, the
following symbols are used :

Tote) = Tate) = 220 1) = Fuw) - 22
(18)

Ty ® = M) — E9W
lg(q)j (7 =12 @19

Tyts® = N;@) — f"ﬁ;

Formulas for Deflections and Stresses
The maximum bending stresses at the extreme fibers are
o = =(6/RDM, o = £(6/AD My (20)

where the plus and minus signs, respectively, apply to points
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in the wall at the inner and outer surfaces of the shell. The
total stresses at these locations are obtained from the super-
position of the stresses given by Egs. (20) and their corre-
sponding counterparts o, and .

Use of the equations listed in Ref. 13 for w, a., o, M., and
M 4, expressed as functions of ¢y, 8;(j = 1,2), and K, together
with Egs. (1, 5, and 10) for the integration constants, namely,
Gy, . .. Gy, Hy . . . Hg, and subsequent multiplication of the
resulting formulas by the right-hand side of Eq. (14) forn = 0
and that of Eq. (15) for n > 1 before summation give the
following formulas for nondimensional deflections and
stresses:

v _ 3@ =) (a\" b/a
<W>2§8 T 4K ( > sin(8/a) (Tor + Teo) +
6(1 — Y fa\* & s1n(n6/a)
T sin(6/a) (ﬁ) 2; [(HsTs — HeTs) +
(H7T7 — H{T)) cosng  (21a)
—3(1 — ¥

s _ =31 =) hd
<— P*/a2>$§3 ~ Krsin(3/a) ( > Z=:
nsm< )[(HsTe-l—HeTa)—}-(H7Ts+HsT7)]Cosn¢> @1b)

oy _ 31 - %) fa\? 6/a
< P*/a2>;:8 = ik (h) (/g Too T +
31 — v [a\* & sin(né/a)
K sin(6/a) (‘) ., X
{(KI(K + n¥/Q)HTs — HeTo) +
(K — n¥/Q)(H:T: = HsTy)] +
QUE + n2/Q) (HsTs + HeTs) —
(K — n2/Q(H,Ts + HsTo)1} cosng  (21¢)

T2 3(6/a)
<P*/a2)$§% m ( ) (T — Te) +

W
20 — v2)(a/h) Z <P*/Ea2>;§:8

3 a\? 2. sin(né/a)
7 sin{/a) <_> 2 n el +

n=1
’/L2/Q) (HsTs - HGTG) - (K - ’I’L2/Q)(H7T7 —
HTs)] — K[(K + nz/Q)(H5T3 + HeT%) -+
(K — n%/Q)(H:Ts + HsT)1} cosng  (21d)

where w, represents w for any n > 1.
Ogb . Tzb
(P = (7o 2)3@’;8 *
g [ _Wr
s 2, <P*/Ea2>;zzg @1

The grouping of terms in the formulas for deflections and
stresses and the related symbols facilitates computations.
These formulas are all exaet ones. For special cases where
z = 0 or ¢ = 0 or both are equal to zero, these formulas can be
considerably simplified.

Criteria for Number of Terms Required

To compute the formulas for deflections and stresses,
Eqgs. (3) and (4) must be used for every n for fixed z and ¢.
For satisfactory accuracy in the results, a least number of
terms in each of the formulas is needed for calculation.
Usually this number is quite large because the terms after
the first few converge slowly in absolute value. Hence,
the amount of work to meet this requirement is prohibitive
in most cases. The alternative is to stop the computations
at a small number of terms, beyond which replacement by the
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Table 1 Comparison of exact and approximate values for

t=3
Exact Approximate Percentage
formula formula of error
Q/n 0.946067 0.944444 0.1729%,
n/Q 1.057008 1.055556 0.137%,
ai/n 1.237240 1.235702 0.1249,
az/n 0.765835 0.764298 0.2019%,
B1/(K/2) —1.23534 —1.235702 —0.209%
B/ (K /2) - 0.764659 0.764298 0.047%

asymptotic expressions can be justified, and then estimate
rather accurately the remainder, called ‘residual’’$-1° from
these asymptotic formulas.

For sufficiently large n, the quantities ©, oy, 8, (j = 1,2)
may be expanded in powers of

t = K/(2"n) (22)
From Eq. (4), one can express 2/n in terms of {; thus
Q/n = +[—t2 + (1 + thve]2 (23)

which may be expanded in ascending powers of ¢. The radius
of convergence of the series in ¢ can be established, since the
zeros of the right-hand side of Eq. (23) are at =+ (1/2V2)
(1 % 7). The radius of convergence in each case is the ab-
solute value of the zeros just listed. In other words,

0<t<1 (24)

This is also true for o; and 8;. To increase the rapidity of
convergence and to make the simplification of residual for-
mulas possible, as will be shown later, the inequality (24) is
now replaced by the more stringent requirement

0<t<} (25)

Table 1 lists values obtained from exact formulas and ap-
proximate ones for comparison. The latter are derived
from power series in ¢ but are approximated by quantities in-
volving the lowest power of ¢ appearing therein. The small
percentages of error justifies the use of the approximate
formulas when ¢ < 4. The bound on ¢ expressed in the in-
equality (25) is equivalent to the requirement

n > 3K /212 (26)

Since K¢ = 3(1 — v¥)(a/h)? withy = 0.3, K = 1.2854(a/h)1/?,
and one gets n > 2.7268(a/k)V2.  For practical calculations,
the inequality n > 2.75(a/h)Y? may be used.

Now, if e;L/a = 5, then tanh(a,L/a) = 1.0000 correct to
four decimal places. Then, from Eq. (7),

= 0.013475 cos(B;L/a) 27)
That is, if o;L/a > 5,
lgs| < 0.013475 (28)

which is small compared to unity.
In conclusion, the criteria for the smallest n for which the
exact formulas are computed up to are all those listed below:

n > 2.75(a/h)1?
G = 1,2>} 29

a,-L/ a Z 5
with the understanding that «; approaches » as n increases
indefinitely.

The criteria (29) show that n will be least for a long, thick
cylinder and largest for a short, thin cylinder. To take a
typical example, as considered later in this paper, L/a = 5
and a/h = 50. The least value of n is approximately 20.

Asymptotic Expressions for Residuals for z # 0

As n increases indefinitely, ¢; diminishes rapidly as com-
pared to unity, and M;/cosB;xz and N,/sinB;z approach e~
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From Eq. (23), one may obtain the power series in ¢ for Q
and n2/Q as listed below:

Q=mnll — @©/2)+ /8 + ...]
nQ = nll + (/2) + (4/8) — . .. ]} (30)

Therefore, £ and n?/Q may be assumed equal when 2 « 1.
At the same time, @; approaches =, and B, and B: approach
(=K/2) and (K/2), respectively, as their limits.

Then, from Egs. (21), the residuals of the formulas for de-"

flections and stresses can be expressed approximately in terms
of the following:

A/n7) (e~ % cosBy x £ e~ * cosPar)
A/n7) (e~ %' sinBizx £+ e~ 2% sinPor)

where 7 is a positive integer.

But as 2 < 1, from Eqs. (3) and (4), one finds that (e~ '
cosPiz — e~ %% cosfex) and (e~ % sinfizr + e~ sinBu),
respectively, are much smaller than (e~ 2% cosfBiz + ¢~
cosPer) and (e~ %% sinfiz —~e~ ™ sinfyz). Therefore, only
the terms

e Sy il BT

A/n") (e« sinBix — e~ **% sinBur)

are retained, with r the least and next to least positive
integers.

From Egs. (21), with the aid of Eqgs. (3) and (4) and the
understanding that only the terms (31) are retained, one may
derive the asymptotic formulas for residuals for z # 0 and
¢ > 0in the following forms:

wa \ 30— (a4} o (Kz)
(P*/Ea2>$§% ~ 27 sin(3/a) <h> "°Sh( 2 )e X
I:cos(K:c/Z) 4 sin(Kx/Z)] I:sinn<§+¢) i
n Kn? a

sinn(g - ¢>] (32a)
]

(0)n _ 30 =2 [a Ke\ _ .
( P*/a?)iio 167 sin(3/a) ( ) oos 2>e X
[cos(Kx/Z)

nt K3n

Ic
) )] o

(e i
P*/q? ff,:o 167 sin(8/a) \h

cosh<1&> gTne I:COS(KZQ) + 4
2 nt

sm(Kx/ 2)

X

sin(Kz/2)
Ksn ] X

[sinn(S n ¢> + sinn<g - QS)] (32¢)

<(axb),,> _ 3 g>2 . I&) e
P*/a2 )28 = dmsn(s/a) \h) N\ 2 )¢

[(1 +v) cos(Kz/2) (1 — ) sin(Kx/Z):l %

n? Kn

[sinn<g + qS) + sinn@ _ ¢>] (32d)

(P2 )i = s (i) (%) e
P*/a2 )323 T i sm(/a) \n) @M g )¢ X
[(1 + ») cos(Kz/2) i 1 - Sin(Kx/2):| %

n2 Kn

[sinn(% + ¢>) + sinn(S - ¢>] (32e)
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When
ne > 3 (33)

e will be oY at most and will diminish rapidly with in-
creagsing n. If condition (33) is satisfied, then the successive
terms descend quickly enough in practice for accurate re-
sults to be obtained without the calculation of residuals.

Asymptotic Expressions for Residuals for x = 0

From Egs. (32), the asymptotic expressions for residuals
for x = 0 can be obtained in simple form. They are

( W > 3(1 — »?) (t_z)3 1
P*/Eat /228 = 2r sin(6/a) X
i [smn( + ¢>> -+ sinn(S - ¢>]
(_ (orz)n> _ <_ (tf¢)n> _
P*/a? /528 P*ar)5%0

s (77m)

8 \P*/Ea? J529
((o'mb)n> _ <(‘7¢b)n> - 31+ ») %
P¥/a2)520 T \P*/a2/520 ~ 4x sin(8/a)

() 2 in(E = )i )]

Numerical Evaluation of Residuals

(34)

To evaluate residuals from the asymptotic expressions
for both the z # 0 and the z = 0 cases, Euler’s method™1. 1
can be used. However, for the z = 0 case, the use of sine and
cosine integralst—10 gives more accurate results and is con-
siderably less time consuming. As an example, the formula-

tion is as follows:
w1, 8
¢>] =~ fN et sm[(a + ¢>z:l dz =

nézv nlz sin[n(S +
(N O
cos[(f; + d))z] dz (35)

The second term under the integral sign on the right side of
Eq. (35) can always be reduced to cosine integrals. There-
fore, in this paper Euler’s method is employed for the = % 0
case, and the cosine-integral method is used for the z = 0 case.
In the latter, the cosine integrals are evaluated for N =

Investigation of Convergence

To prove that the formulas for deflections and stresses
under the radial load converge, one has to examine each
equation. For the radial load case, one may look at the
residual formulas (32) for fixed z and ¢. Any infinite series
containing terms such as e™=, 1/n7, where r > 2, or their
products is absolutely convergent. Also, the infinite series
containing terms (1/7) sin[n(8/a + ¢)] and (1/n) sinfn(s/
a — ¢)], which are alternating in signs in succeeding groups
of terms, are convergent. For z = 0, the residual formulas
(84) are all absolutely convergent.

Numerical Results

Numerical results have been determined for the foremen-
tioned cylinder. For z = 0, they are evaluated at three
locations of z, namely, (1/7)(8/a), (1/7)(38/a), and (1/x)
(56/a). Among these values of z, residuals for z = (1/7)
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Table 2 Deflections and stresses along ¢ = 0 (a/L = 1, a/h = 50, §/2ra = <)

w X 1073 — oy X 1072 —agp X 1072 gy X 1073 gy X 1073

x P*/Ea? P*/a? P*/a? P*/a? P*/a?

0 4.66 3.67 4.38 1.79 1.58
(1/7X8/a) 4.54 3.46 3.46 0.792 1.23
(1/7)38/a) 4.07 2.90 1.07 0.114 0.827
(1/7)58/a) 3.68 2.22 —0.0415 0.0286 0.628

Table 3 Deflections and stresses along x = 0 (a/L = £, a/h = 50, §/2ra = )
w X 1073 —g, X 1072 —ap X 1072 gz X 1078 agp X 1073

¢ P*/Ea? P*/a? P*/a? P*/a P*/a?

0 4.66 3.67 4.38 1.79 1.58
8/2a 4.35 3.38 4.09 1.59 1.38
8/a 3.50 ‘ 2.58 3.29 0.879 0.677
25/a 1.34 0.735 1.49 —0.0768 —0.267
x/2 —0.193 —0.401 —0.0111 —0.0105 0.0359
T —0.189 0.0399 0.00465 —0.00905 ~0.0308

(8/a) were calculated only because the largest n used in the and

exact formulas is 20; as a consequence, 20 6/7a = 1, which
is less than 3. For the other nonzero values of z, the calcula-
tion of residuals was not necessary. These may be evidenced
from Eq. (33) and the related statement mentioned before.
These results are shown in Tables 2 and 3 and Figs. 1-5.
Solution 1 in these figures refers to the same cylinder acted
on by a uniformly distributed line-load along a segment in
the generator direction® ! for comparison. All the calcula-
tions are made at the locations along the generator and cir-
cumferential directions measured in units of §/a.

Appendix

The integration constants are derived for the following
two additional cases of localized loading (Figs. 8a and 8b)
for possible extended use of the residual technique in the
calculation of the deflections and stresses. For practical
application, any localized loading on the cylindrical shell
may possibly be resolved into these three cases of loading,
and, because of linearity, the results from all of them can be
superposed to attain the combined ones.

A. Longitudinal Moment Case

For the longitudinal moment case where a distributed line-
moment is applied (Fig. 8a), the appropriate boundary condi-
tions for half of the cylinder from z = 0 to z = +L/2a¢, when
the cylinder is simply supported, are w = W, = U, =
v=0atx=L/2candw =u, =v=0atz = 0. Simi-
larly, as in the radial load case, w .. = 1 at x = 0 is assumed
for convenience. When these boundary conditions are
imposed,® 1 the constants of integration!? can be evaluated
as follows:

1) Forn>1,
H = —H; = @/4K)[(K*/2)?* + m]-2 } "
Hy = —H, = —(n?/4KQ)[(K%/2)? 4 n*] 712

When these constants are known, the values of H;, . . . Hs
can be determined from the following relationships:

Hyjiz = Hoj 1Ssj 1 — HSy
2§43 251025 —1 27 21} (.7 - 1}2) (AZ)

sz_;q = ng_ngj + H2js2j—1

where
Sz;1 = tanh(a;L/a)/(1 — ¢;

251 (o /a)/( QJ) } G =12 (A3)

Sy = g5 tan(B;L/a)/ (1 — g¢5)

2) Forn =0,

Gl = Gs = G4 = G7 EO, G2 = 1/2K2 (A4)

Gs = q tan(KL/a)/2K*(1 — qo)}

(A5)
Gs = tanh(KL/a)/2K2(1 — q)

As shown in Fig. 8a, M, * is the total resultant moment due
to the uniformly distributed longitudinal moment load for
the entire cylinder over an arc length 26. For half the
cylinder, from z = 0 to x = +1/2a,

M* 8/a
5 = 2 fo ga cosepdd

where ¢ is the longitudinal moment load per unit circumfer-
ential length. Therefore, the longitudinal moment load per
unit length for half the cylinder is distributed such that

M*/4q sin(8/a) for —8/a < ¢ < é/a } (46)
=0 for 8/a< < — 8/a

i

q

Up to now it has been assumed that, for any n, w .. = 1
at x = 0, which implies that —M./(D/a) cosng = 1.  How-
ever, if the Fourier expansion is used for the present solution,
forn = 0,

—M./(D/a) = M.*(6/a)/4nD sin(d/a) (A7a)
and forn > 1,
—M./(D/a) cosng = M.* sin(né/a)/2nwD sin(é/a) (A7b)

With Eqgs. (A1-A5 and A7a and A7b), formulas for deflec-
tions, slopes, stresses, and their residuals may be obtained
by following procedures similar to those described for the
radial load case.

B. Circumferential Moment Case

For the circumferential moment case, an applied distributed
radial load is considered in such a way as to be statically
equivalent to a circumferential moment and a tangential
force. Thus, the appropriate boundary conditions for half
the cylinder from z = 0 to x = +L/2a, where the cylinder
is simply supported, are essentially the same as those for
the radial load case on both the boundaries. The only dif-
ference is that sinn¢ replaces cosng and —cosng replaces
sinng in the final expressions for deflections and stresses due
to antisymmetric loads with respect to ¢ = 0.

As in the radial load case, unity is assumed for w .. at
z = 0 for convenience. The actual value can be obtained
from the Fourier expansion for the circumferential moment
line-load shown in Fig. 8b; M * is the total resultant circum-
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Fig. 8a Applied longitudinal moment loading.
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Fig.8b Applied circumferential moment loading.

ferential moment due to the uniformly distributed antisym-
metric radial load for the entire cylinder over an arc length
26.
For half the cylinder, from 2 = 0to 2 = +1/2a,
My* 3
—2i = 9 j; /e ga? singde

where ¢ is defined as in the radial load case. Consequently,
the radial load per unit length for half the cylinder is dis-
tributed such that

q = +My*/4a*[1 — cos(6/a)] for 0< ¢ < 8/a
—Mys*/40[1 — cos(8/a)] for —6/a < ¢ <0 (A8)
=0 foré/a< ¢ < ~— 6/a

Up to now it has been assumed that, for any n > 1, w 40 =
1 at 2 = 0, which implies

—Q,. ot/ (D/a?) sinng = 1

However, if the Fourier expansion is used for the present
solution, forn > 1,

—@Q.. et/ (D/a®) sinng =
[1 — cos(né/a)IMs*/2nmwD[l — cos(8/a)] (A9)

Using the same equations as in the radial load case with
the change in trigonometric functions of n for the anti-
symmetric loads as mentioned previously and Eq. (A9),
formulas for deflections, slopes, stresses, and their residuals
may be obtained in a manner similar to the previous cases.

As noted earlier, the radial load applied is actually equiva-
lent to the circumferential moment load M* and a tangential

ATAA JOURNAL

load N*, acting on the median surface of the cylindrical shell
atz =0and ¢ = 0.
For half the cylinder,

N* 8a |
5 = 2f0 qa singde

or

N* = 4qa[l — cos(d/a)]

.From the first of Egs. (A8) for ¢, one gets N* = My*/a.

Therefore, the stresses developed due to the direct load N * are
of the order N*/h == M,*/ah, which is quite small compared
to the stresses due to the total circumferential moment re-
sultant, which is of the order of 6Ms*/h2. Therefore, the
effect due to N * can be neglected.

References

! Bijlaard, P. P., “Stresses from local loadings in cylindrical
pressure vessels,” Trans. Am. Soc. Mech. Engrs. 77, 805-814
(1955).

z Meck, H. R., “Bending of a thin cylindrical shell subjected
to a line load around a circumference,” J. Appl. Mech. 28,
427-433 (1961).

¥ Donnell, L. H., “A discussion of thin shell theory,” Pro-
ceedings of the Fifth International Congress of Applied Mechanics
(John Wiley and Sons Inc., New York, 1938), pp. 66-70.

* Sheng, J., “Discussion on Ref. 2, J. Appl. Mech. 29, 592—
594; also 29, 766 (1962).

8 Nash, W. A. and Bridgland, T. F., Jr., “Line loadings on
finite length cylindrical shells—solution by the finite Fourier
transform,” Quart. J. Mech. Appl. Math. XIV, 129-136 (1961).

® Fligge, W., Siresses in Shells (Springer-Verlag, Berlin,
1960), pp. 218-221.

” Pohle, F. V., “Deformations and stresses in cireular cylindri-
cal shells caused by pipe attachments, Part III: Numerical
methods,” Knolls Atomic Power Lab., Schenectady, N. Y.,
Rept. KAPL-923 (November 1952).

8 Kempner, J., Sheng, J., and Pohle, F. V., “Tables and
curves for deformations and stresses in circular cylindrical shells
under localized loadings,” Polytech. Inst. Brooklyn, Brooklyn,
N. Y., PIBAL Rept. 334 (October 1955).

¢ Sheng, J., “Circular cylindrical shells under circumferential
line loads,” Ph.D. Dissertation, Polytech. Inst. Brooklyn, Brook-
lyn, N. Y. (June 1956).

0 Sheng, J. and Kempner, J., “Circular cylindrical shells under
segmental circumferential line-load,” Polytech. Inst. Brooklyn,
Brooklyn, N. Y., PIBAL Rept. 663 (April 1963).

1 Kempner, J., Sheng, J., and Pohle, F. V., “Tables and curves
for deformations and stresses in circular cylindrical shells under
localized loadings,”” J. Aeronaut. Sci. 24, 119-129 (1957).

12 Hoff, N. J., “Boundary-value problems of the thin-walled
circular cylinder,” J. Appl. Mech. 21, 343-350 (1954).

13 Pohle, F. V. and Nardo, 8. V., “Simplified formulas for
boundary-value problems of the thin-walled circular cylinder,”
J. Appl. Mech. 22, 389-390 (1955).

 Donnell, L. H., “Stability of thin-walled tubes under tor-
sion,” NACA TR 479 (1933). )

% Bromwich, T. J. T’A., An Iniroduction to the Theory of Infiniie
Series (Macmillan & Co., London, 1949), pp. 62-66.



